304am永利集团学术活动预告
报告承办单位:数学与统计学院
报告内容: Potential Theory of Subordinate Brownian Motions
报告人姓名:宋仁明
报告人所在单位:美国 Illinois大学数学系
报告人职称/职务及学术头衔:教授,博导
报告时间:8月1日16:00 – 17:00
报告地点:理科楼410
报告人简介:宋仁明, 教授, 1983和1986年毕业于河北大学数学系,获得理学学士和硕士学位; 1993年毕业于佛罗里达大学数学系,获得哲学博士学位。1994年到密西根大学数学系任教,此后分别于1997、2003、2009获得伊利诺斯大学数学系助理教授、副教授和教授职位。宋仁明教授主要从事随机分析和Markov过程研究,任国际期刊《Journal of Korean Mathematical Society》编辑、《llinois Journal of Mathematics》主编,已发表学术论文百余篇。
摘要: A subordinate Brownian motion can be obtained by replacing the time parameter of a Brownian motion by an independent increasing Levy process (i.e., a subordinator). Subordinate Brownian
Motions form a large subclass of Levy processes and they are very important in various applications. The generator of a subordinate Brownian motion is a function of the Laplacian. In this talk, I will give a survey of some of the recent results in the study of the potential theory of the subordinate Brownian motions. In particular, I will present recent results on sharp two-sided estimates on the transition densities of killed subordinate Brownian motion in smooth open sets, or equivalently, sharp two-sided estimates on the Dirichlet heat kernels of the generators of the subordinate Brownian motion.